You can use DNA, RNA, RNPs (ribonucleoproteins) or proteins to transfect your cells, and each has its own advantages and disadvantages. Additionally, certain cell types or applications may only work with a specific transfection substrate, and you will often need to reoptimize your transfection conditions when switching substrates. More details on each transfection substrate are provided below.
Plasmid and Linear DNA Transfection.
Plasmid and linear DNA transfection
Plasmid DNA is commonly used for transfection (although linear DNA can also be used). In both cases, you should ensure that your DNA is as pure as possible, with any contaminating lipids, salts, proteins, nucleotides or other factors removed via DNA purification. The best way to obtain high quality DNA is by using a purification method based on anion exchange technology which includes an additional endotoxin removal step. This helps to ensure optimum transfection efficiency and cell viability. When transfecting DNA purified with silica membranes, there is a high risk, on poor transfection efficiency and cell viability, further downstream results might not be trustable.
DNA is the substrate of choice for a wide range of applications, as it is relatively stable, easy to handle and cost effective to produce. DNA vectors are also the best option if you are looking to achieve stable transfection via incorporating your construct into the target cell’s genome. However, as DNA constructs must make their way into the nucleus to induce gene expression, they are slower to drive expression than mRNA (which exerts its effects as soon as it enters the cytoplasm, see below). In all cases the toxicity of the expressed protein has an impact on the transfection result, no matter if DNA, mRNA or the protein itself was transfected. When transfecting plasmid DNA, also the plasmid backbone and the promoter can have an influence on the transfection result.
RNA transfection
The RNA used for transfection can take several forms, depending on the application. For example, mRNA is an effective substrate for inducing rapid protein expression, as it enables results to be achieved more quickly than using DNA. It is also possible to transfect cells with regulatory or non-coding RNAs to modify the expression of endogenous genes (e.g. gene knockdown via RNA interference).
In general, RNA transfection has a higher efficiency than DNA transfection as it just needs to enter the cytoplasm. Furthermore, with DNA-sensitive cells, cell viability is often much better when using RNA. As already said before, the toxicity of the encoded protein has an impact on the transfection result as well. The general instability of RNA can also make it more challenging to work with. Meanwhile, production can also be more cumbersome (as the mRNA must be transcribed from a DNA template, introducing an extra step) and/or expensive (if the RNA will be chemically synthesized). Note that RNA cannot be used for stable transfection, as it will not be integrated into the host cell’s genome.
Protein transfection
Protein transfection is used for specific applications, such as the introduction of Cas9 enzymes for gene editing via CRISPR, and the use of transcription factors to reprogram cells to generate iPSCs. The advantage of using proteins is that they usually exert their influence on the cell immediately and the quantity can be controlled much better. However, proteins vary greatly in terms of size, shape and charge, so transfection conditions must often be specifically optimized on a per-protein basis. Another practical consideration is that proteins must either be made and purified or purchased from a supplier – both options can be costly, especially when compared to generating DNA or RNA substrates.
Ribonucleoprotein RNP transfection
Today, genome editing is a state of the art technology that requires transfection. While plasmids and/or RNAs can be used to achieve genome editing, e.g. to deliver the Cas9 nuclease and the gRNA for CRISPR-based genome editing, also the transfection of ribonucleoproteins (RNPs) is widely used. For CRISPR-based genome editing this requires the transfection of a Cas9-gRNA complex. For further details on how to use Nucleofector® Technology for genome editing approaches download our free ‘Transfection Methods – Technical Reference Guide’. For further information on RNP transfection download our WhitePaper on Genome Editing of Resting CD4+ T cells or request a copy of the detailed protocol.