

Efficient Transfection of Biologically Relevant Cells in Immunology Research

13 May 2014 / Speaker: Sean Fuerst 14 May 2014 / Speaker: Dr. Isabella Drewelus

Lonza

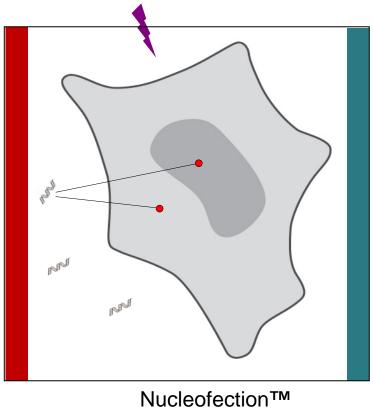
© Lonza Cologne GmbH

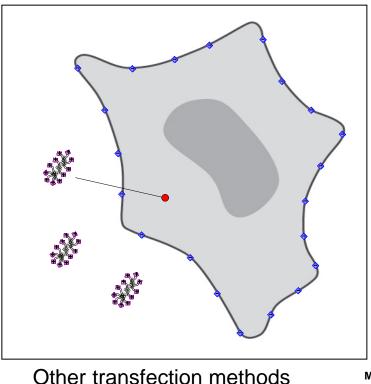
Agenda

- Technology Introduction
- Nucleofection[™] of Immune Cells Application Examples
 - Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
 - Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs
- Summary

Agenda

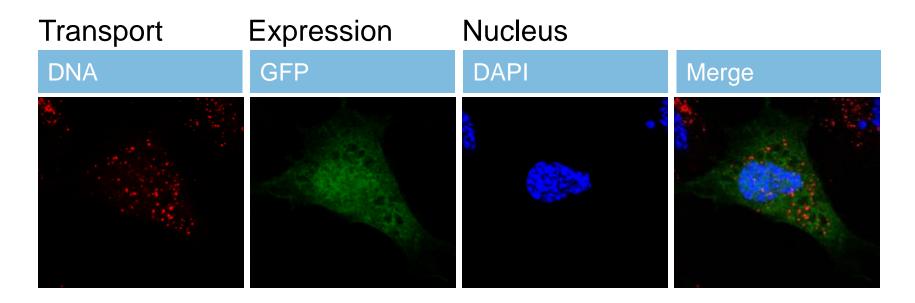
Technology Introduction

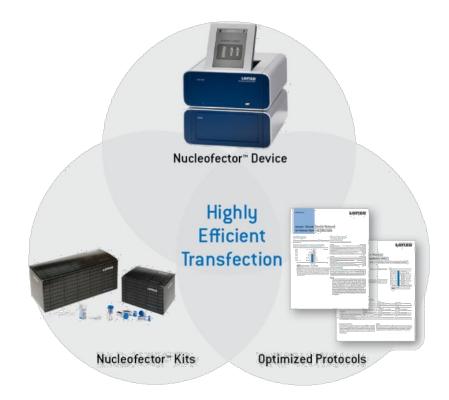

■ Nucleofection[™] of Immune Cells – Application Examples


- Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
- Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs

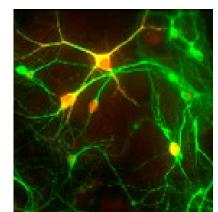
Summary

Nucleofection[™]– The Principle

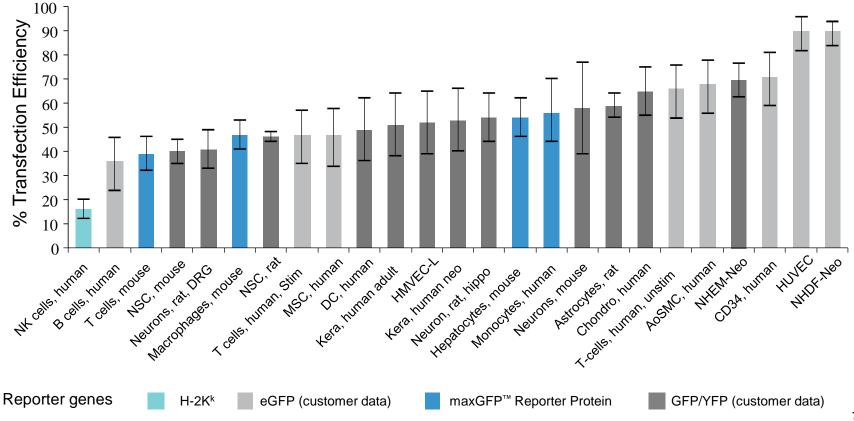

- High transfection efficiency combined with low mortality
- DNA is directed into the nucleus giving faster gene expression



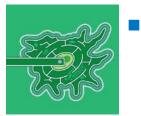
Proven Transport of DNA Into the Nucleus


Primary NHDF-neo cells were transfected with labeled plasmid DNA encoding GFP, fixed after 2h in 3.5% PFA and analyzed by confocal microscopy.

Components of Nucleofector[™] Technology


A Unique Combination:

- Nucleofector[™] Device
- Specific NucleofectorTM Kits
- Detailed optimized protocols
- Enabling excellent transfection performance combined with high functionality!



More Than 80 Primary Cell Types Successfully Transfected

Analysis time: 16-48 h post Nucleofection[™]

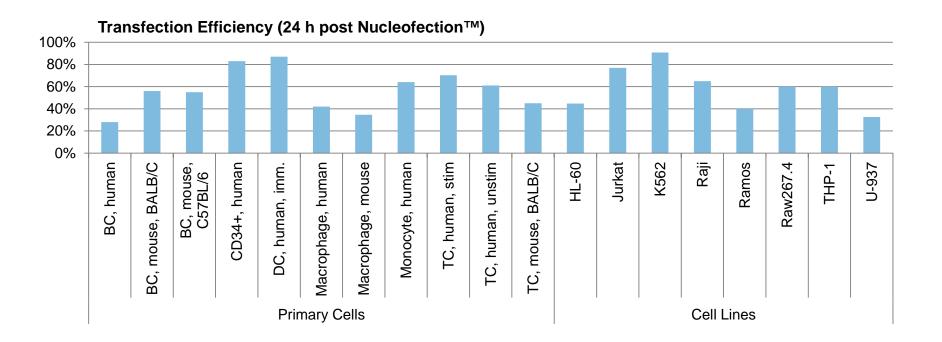
Nucleofection™ Applications Overview

- Immunology
 - Human T cells
 - Immune system cells

- Metabolic research
 - Chondrocytes
 - INS-1, MIN-6
 - Adipocytes, 3T3-L1

- Cancer
 - Mammary epithelial cells
 - Prostate epithelial cells

- Neurobiology
 - Cortical neurons
 - Dorsal root ganglia


- Respiratory/ Cardiovascular research
 - Bronchial epithelial cells
 - Cardiomyocytes
 - HUVEC, HMVEC, SMC

- Stem cell research
 - Human fibroblasts
 - Human CD34+ cells
 - Human monocytes

More Than 45 Blood Cell Types Successfully Transfected

Just a few examples...

9 May-14

Nucleo fection[™] Applications in Immunology Research

- HIV research, e.g.
 - Study of mechanisms that lead to apoptosis of CD4+ T cells upon HIV infection (Laforge M et al., 2007)
- T-cell differentiation, e.g.
 - Identification of genes involved in Th1 and Th2 cell differentiation (Lund RJ et al., 2007). Th subtypes are involved in the pathogenesis or progression of many immune-mediated diseases, such as type 1 diabetes and asthma
- Regulation of cytokine expression or cytokine signaling pathways (e.g. via reporter gene assays)
- Generation of specific antigen-presenting cells (APCs, e.g. dendritic cells or B cells) for subsequently stimulating cytotoxic T lymphocytes (CTLs)

Agenda

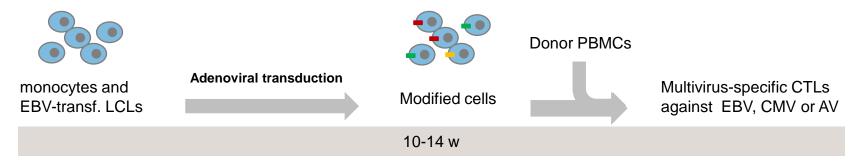
Technology Introduction

■ Nucleofection[™] of Immune Cells – Application Examples

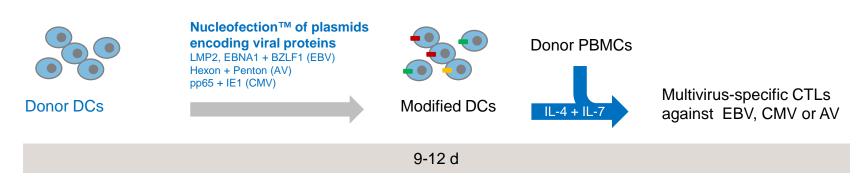
- Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
- Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs

Summary

Treatment or Prevention of Viral Infections with Multivirus-Specific T Cells (1)

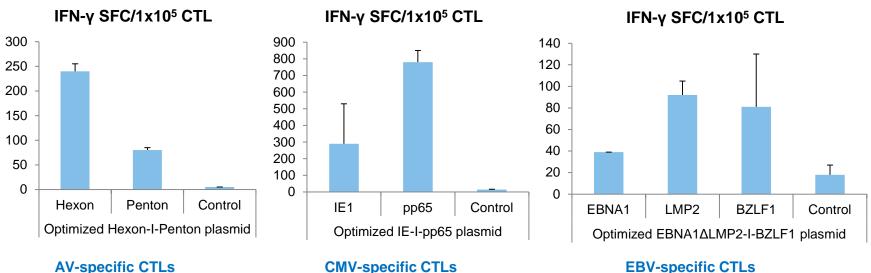

Gerdemann U., Vera J.F., Rooney C.M., Leen A.M. (2011). Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant. JoVE. 51. http://www.jove.com/details.php?id=2736

Background


- Viral infections can be severe side effects for transplantation of allogeneic hematopoietic stem cells due to immuno-suppression of recipients
- Infusion of virus-specific cytotoxic T lymphocyte (CTL) from the stem cell donor have proven effective for prevention or treatment

Treatment or Prevention of Viral Infections with Multivirus-Specific T Cells (2)

Approach so far:


New approach:

Lonzo

Treatment or Prevention of Viral Infections with Multivirus-Specific T Cells (3)

Transfected human DCs were used to stimulate T cells and specificity was analyzed by IFN_Y ELIspot 10 days post-stimulation

EBV-specific CTLs

Treatment or Prevention of Viral Infections with Multivirus-Specific T Cells (4)

Results:

- Due to non-viral transfection there is no competition of specific antigens of interest with other viral antigens
- Optimized CTL culture conditions improved cell survival and proliferation
- Protocol enables generation of CTLs with the correct phenotype and functionality (data not shown here)
- Significant time savings (~2 weeks vs 10-14 weeks)
- Simple protocol, FDA approved
- Conclusion:
 - Reduction of time, cost and complexity may allow broader implementation of T-cell immunotherapy
 - Approach can be easily extended to other viruses provided that protective antigens are identified

Agenda

- Technology Introduction
- Nucleofection[™] of Immune Cells Application Examples
 - Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
 - Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs
- Summary

Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer

Field AC, Vink C, Gabriel R, Al-Subki R, Schmidt M, et al. (2013) Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer. PLoS ONE 8(6): e68201. doi:10.1371/journal.pone.0068201

Background:

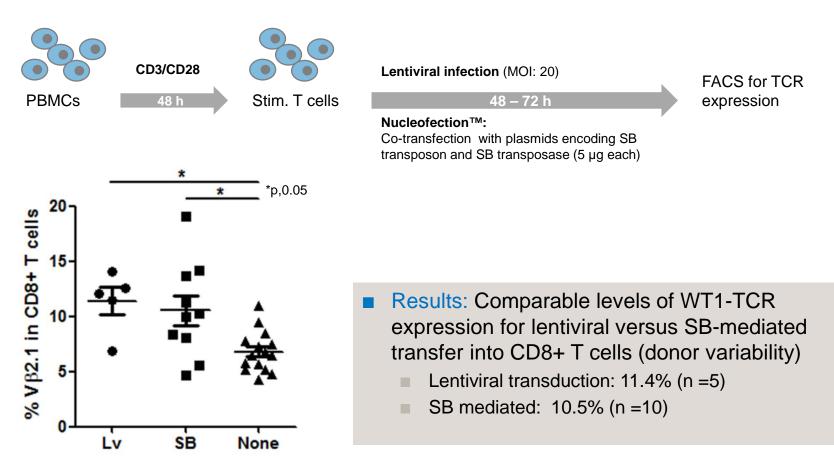
■ Transfer of recombinant T cell receptors, e.g. chimeric antigen receptors (CARs), into T cells → redirecting T cell immunity against tumor or viral antigens

Retro- or lentiviral transduction

- High effort: New viruses required when testing different receptor constructs
- High-costs: Manufacturing clinical grade viral vectors

Plasmid-based gene transfer using transposable elements, e.g. Sleeping Beauty (SB)

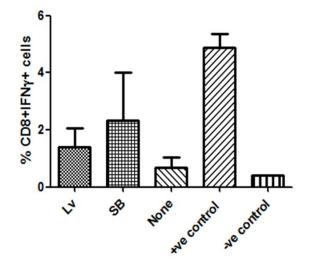
This study:


Comparison of lentiviral transduction (LV) versus Nucleofection[™] of an enhanced Sleeping Beauty transposition system (SB100X, a hyperactive SB transposase) to deliver a codon optimized αβ TCR against WT1 antigen

From: Field A-C, Vink C, Gabriel R, Al-Subki R, Schmidt M, et al. (2013) PLoS ONE 8(6): e68201. doi:10.1371/journal.pone.0068201,. With premission.

18

Lonza


Comparable TCR Expression Levels

Comparable In Vitro Functionality

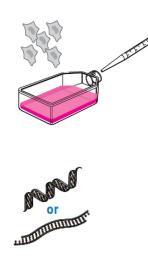
IFNγ release of modified CD8+ T cells after exposure to

- a WT1 peptide
- anti-CD3 Ab (positive control)
- irrelevant peptide (negative control)

Results:

- LV transduction: 1.4% of all CD8⁺ IFNc⁺ cells (= 28% of WT1 TCR-positive cells)
- SB mediated: 2.3% of all CD8⁺ IFNc⁺ cells (= 57% of WT1 TCR-positive cells)

Conclusion


- Additional results (not shown here):
 - Confirmation of in vivo functionality of SB modified murine T cells in transgenic mice
 - Similar number of integration sites (n≥150) for both LV and SB, but integration within genes was higher with LV (70.8%) than with SB100X/transposon (40.2%)
- Conclusion: SB-mediated transfer of antigen-specific T cell receptor into T cells using Nucleofection[™]
 - Offers a flexible pathway for rapid evaluation of different receptor configurations
 - May allow after further optimization and adaptation to GMP conditions for therapeutic applications to be explored in early phase clinical studies

Agenda

- Technology Introduction
- Nucleofection[™] of Immune Cells Application Examples
 - Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
 - Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs
- Summary

Things to Consider For Optimal Nucleofection[™] Results

Low passage number Log growth phase No contamination Donor differences Minimize physical stress

Highly purified, endotoxin-free Low DNA amounts (or mRNA)

Equilibrate to RT Minimize incubation with cells

Use optimized conditions

Fresh medium at 37 °C gentle seeding No repeated aspiration Wait at least 2-4 h before adding stimulants

Agenda

- Technology Introduction
- Nucleofection[™] of Immune Cells Application Examples
 - Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
 - Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs
- Summary

Nucleo fection[™] Portfolio Tailored to Your Needs

				lenze	
Device	4D-Nucleofector™ X Unit	4D-Nucleofector™ Y Unit	96-Well Shuttle™ Add-on	HT Nucleofector™ System	Nucleofector™ 2b Device
Throughput	Low (1-16)	Low (24)	Medium (96)	High (384)	Very low (1)
Format	Suspension	Adherent	Suspension	Suspension	Suspension
Reaction Volume	100 µl and 20 µl	350 µl	20 µl	20 µl	100 µl
Electrode Material	Conductive polymer	Conductive polymer	Conductive polymer	Conductive polymer	Aluminum
Cell Numbers	20 µl: 10 ⁴ to 10 ⁶ 100 µl: 10 ⁵ to 10 ⁷	10 ⁴ to 10 ⁵	10 ⁴ to 10 ⁶	10 ⁴ to 10 ⁶	10 ⁵ to 10 ⁷

4D-Nucleofector[™] System Consumables Tailored for Your Application

Benefit from

- Transfer of conditions from 20 µl to 100 µl
- Use of Conductive Polymer instead of metal electrodes
- Transfection cells in adherence

Agenda

- Technology Introduction
- Nucleofection[™] of Immune Cells Application Examples
 - Generation of specific antigen-presenting cells for stimulating cytotoxic T lymphocytes
 - Suitability of Nucleofection[™] for Recombinant T Cell Receptor Transfer
- Tips and Tricks for Successful Nucleofection[™]
- Nucleofection[™] Portfolio Serving Different Needs

Summary

Summary Nucleofection™ of Immune Cells

Benefit from				
High efficiency combined with high viability/functionality	 Suited for notoriously hard-to-transfect cells, like primary blood cells or suspension cell lines Up to 95% transfection efficiency with DNA or 99% with siRNA No metal ion release with conductive polymer electrode platforms 			
High application flexibility	 Same conditions for various substrates (DNA, RNA, siRNA etc.) Various platforms for different cell numbers or throughput 			
Ready-to-use, proven technology	 40+ Optimized Protocols for blood/immune cells 900+ immunology related publications 			

Your Lonza Immunology Tool Kit

Primary Cells and Media	Transfection	Cell Analysis
 ■ Poietics[™] Primary Hematopoietic Cells (bone marrow, cord blood, CD34+) ■ Chemically defined, serum-free media (e.g. X-VIVO[™]) ■ BioWhittaker[™] Classical Media (e.g. DMEM, RPMI) 	 NucleofectorTM Technology with optimized protocols for primary human or mouse cells, e.g. T cells B cells Macrophages Monocytes CD34+ cells Dendritic cells 	 ViaLight[™] or ToxiLight[™] Cell Viability and Toxicity Assays MycoAlert[™] Assay for mycoplasma detection in 20 min Precast gels for nucleic acid or protein electrophoresis
	 and numerous cell lines, e.g. Jurkat K562 THP-1 HL-60 U937 	

Sources of Information

Our Online Databases

- Citations: <u>http://www.lonza.com/citations</u>
- Cell Transfection: <u>http://www.lonza.com/celldatabase</u>
- Optimized Protocols: <u>http://www.lonza.com/protocols</u>

Transfection Experts

- Scientific Support Team EU:
- Scientific Support Team US:

+32 87 321 611 scientific.support.eu@lonza.com

800 521 0390 (toll free) scientific.support@lonza.com

Interested in Learning More?

Join our upcoming webinar:

Convenient Generation and Culture of Induced Pluripotent Stem Cells

Slot 1: Tuesday, 24 June 2014 2 PM EDT (New York) / 11 AM PDT (Los Angeles)

Slot 2: Wednesday, 25 June2014 10 AM CEST (Berlin) / 9 AM BST (London) / 5 PM JST (Tokyo)

Register at: www.lonza.com/webinar18

Thank You for Your Kind Attention