Amaxa" 96 -well Shuttle" Protocol for THP-1 (ATCC ${ }^{\ominus}$)

Cell Description

Human acute monocytic leukemia; monocytic cells; (ATCC ${ }^{\circledR}$ TIB-202 ${ }^{\text {T" }}$, cryopreserved).

Example for Nucleofection ${ }^{\text {rm }}$ of THP-1 Cells

Transfection efficiency of THP-1 cells 24 hours post Nucleofection ${ }^{\text {m" }}$. THP-1 cells (ATCC ${ }^{\oplus}$ TIB-202'm) were transfected with program $96-$ FF-100 and $0.2 \mu \mathrm{~g}$ of pmaxGFP ${ }^{\text {m" }}$ Vector. 24 hours post Nucleofection"' cells were analyzed on a FACSCalibur"' with HTS option (Becton Dickinson). Cell viability (\% PI negative cells) is usually around 80% after 24 hours.

Product Description

Recommended Kits
SG Cell Line 96-well Nucleofector ${ }^{\text {m" }}$ Kit

Cat. No.	V4SC-3096
Size (reactions)	1×96
SG Cell Line 96-well Nucleofector ${ }^{\text {rw }}$ Solution	2.25 ml
Supplement	0.5 ml
pmaxGFP ${ }^{m}$ Vector ($1.0 \mu \mathrm{~g} / \mu \mathrm{l}$ in 10 mM Tris pH 8.0)	$50 \mu \mathrm{~g}$
Nucleocuvette ${ }^{\text {m }}$ Plate $(\mathrm{s}$)	1
Cat. No.	V4SC-3960
Size (reactions)	10×96
SG Cell Line 96-well Nucleofectorm ${ }^{\text {rm }}$ Solution	22.5 ml
Supplement	5.0 ml
pmaxGFP ${ }^{\text {m }}$ Vector ($1.0 \mu \mathrm{~g} / \mu \mathrm{l}$ in 10 mM Tris pH 8.0)	$50 \mu \mathrm{~g}$
Nucleocuvette ${ }^{\text {m }}$ Plate (s)	10

Storage and Stability

Store Nucleofector ${ }^{m \mathrm{~m}}$ Solution, Supplement and pmaxGFP ${ }^{m \mathrm{~m}}$ Vector at $4^{\circ} \mathrm{C}$. For long-term storage, pmaxGFP ${ }^{m \mathrm{~V}}$ Vector is ideally stored at $-20^{\circ} \mathrm{C}$. The expiration date is printed on the solution box. Once the Nucleofector" Supplement is added to the Nucleofector ${ }^{\text {rm }}$ Solution, it is stable for three months at $4^{\circ} \mathrm{C}$.

Note

96-well Nucleofector" ${ }^{\text {m }}$ Solutions can only be used with conductive polymer cuvettes, i.e. in the 96 -well Shuttle ${ }^{\text {rw }}$ Device and in the 4D-Nucleofectorm System. They are not compatible with the Nucleofector" $\mathrm{II} / 2 \mathrm{~b}$ Device.

Required Material

Note

Please make sure that the entire supplement is added to the Nucleofector" Solution.

- Nucleofectorm ${ }^{\text {m }} 96$-well Shuttle System (Nucleofector"mevice, version IIS; 96-well Shuttle ${ }^{m \mathrm{~m}}$ Device; laptop with 96 -well Shuttle ${ }^{\text {mw }}$ Software)
- Supplemented 96-well Nucleofector ${ }^{m}$ Solution at room temperature
- Supplied Nucleocuvettem Plate (s)
- Supplied pmaxGFP ${ }^{m \mathrm{~m}}$ Vector, stock solution $1 \mu \mathrm{~g} / \mu \mathrm{l}$

Note

Volume of substrate solution added to each sample should not exceed 10% of the total reaction volume ($2 \mu \mathrm{l}$ for $20 \mu \mathrm{l}$ reactions). For positive control using pmaxGFP ${ }^{m}$ Vector, please dilute the stock solution to reach the appropriate working concentration.

- Substrate of interest, highly purified, preferably by using endotoxinfree kits; A260:A280 ratio should be at least 1.8
- Nucleocuvette ${ }^{\text {rT }}$ compatible tips: epT.I.P.S. (US/CDN: Eppendorf North America, Cat. No. 2491.431, Rest of World: Eppendorf AG, Cat. No. 0030073.266), Matrix TallTips"m (Matrix Technologies Corp., Cat. No. 7281) or LTS Tips (Rainin Instrument, LLC, Cat. No. SR-L10F, SR/SS-L250S, SR/SS-L300S). Before using other types of pipette tips, please ensure they reach the bottom of the Nucleocuvette ${ }^{\text {m" }}$ Wells without getting stuck
- 96-well culture plates or culture plates of your choice
- Culture medium: RPMI 1640 medium with 2 mM L-glutamine adjusted to contain $1.5 \mathrm{~g} / \mathrm{L}$ sodium bicarbonate, $4.5 \mathrm{~g} / \mathrm{L}$ glucose, 10 mM HEPES and 1.0 mM sodium pyruvate, 90% (ATCC®, Cat. No. 30-2001) supplemented with 0.05 mM 2-mercaptoethanol; fetal bovine serum, 10% (ATCC ${ }^{\oplus}$, Cat. No. 30-2030)
- Prewarm appropriate volume of culture medium to $37^{\circ} \mathrm{C}(230 \mu \mathrm{l}$ per sample)
- Appropriate number of cells $\left(2 \times 10^{5}\right.$ cells per sample; 1×10^{4} cells can be used with slightly reduced transfection efficiency; at even lower cell numbers transfection efficiency and viability is strongly decreased

1. Pre Nucleofection ${ }^{\text {m }}$

Cell Culture Recommendations

1.1 Replace media 2-3 times a week (30 ml per T162 flask)
1.2 Passage cells at a density of $6-7 \times 10^{5}$ cells $/ \mathrm{ml}$
1.3 Seed out 2×10^{5} cells $/ \mathrm{ml}$
1.4 Subculture 2-3 days before Nucleofection ${ }^{\text {T. }}$. Cells should be grown to a density of $3-4 \times 10^{5}$ cells $/ \mathrm{ml}$ before Nucleofection ${ }^{\text {m }}$

2. Nucleofection ${ }^{\text {m }}$

One Nucleofection ${ }^{\text {m }}$ Sample Contains

- 2×10^{5} cells
- $0.1-0.2 \mu \mathrm{~g}$ plasmid DNA (in $1-2 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ or TE) or $0.2 \mu \mathrm{~g}$ pmaxGFP ${ }^{\mathrm{m}}$ Vector or $30-300 \mathrm{nM}$ siRNA($0.6-6 \mathrm{pmol} /$ sample)
- $20 \mu \mathrm{I}$ SG Cell Line 96 -well Nucleofector ${ }^{\text {™ }}$ Solution
2.1 Please make sure that the entire supplement is added to the Nucleofector ${ }^{\text {r" }}$ Solution
2.2 Start Nucleofector" 96 -well Shuttle ${ }^{m m}$ Software, verify device connection and upload experimental parameter file (for details see device and software manuals)
2.3 Select the appropriate 96-well Nucleofector ${ }^{\text {rM }}$ Program 96-FF-100
2.4 Prepare cell culture plates by filling appropriate number of wells with desired volume of recommended culture media, e.g. $150 \mu{ }^{*}$ (see note at the end of this chapter) for one well of a 96 -well plate and pre-incubate/equilibrate plates in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator
2.5 Pre-warm an aliquot of culture medium to $37^{\circ} \mathrm{C}(80 \mu$ l per sample*)
2.6 Prepare 0.1-0.2 μ g plasmid DNA or $0.2 \mu \mathrm{~g} \mathrm{pmaxGFP}{ }^{\text {m" }}$ Vector or 30 $\mathrm{nM}-300 \mathrm{nM}$ siRNA ($0.6-6 \mathrm{pmol} /$ sample)
2.7 Count an aliquot of the cells and determine cell density
2.8 Centrifuge the required number of cells (2×10^{5} cells per sample) at $90 \times \mathrm{g}$ for 10 minutes at room temperature. Remove supernatant completely
2.9 Resuspend the cell pellet carefully in $20 \mu \mathrm{l}$ room temperature 96-well Nucleofector" ${ }^{\text {rm }}$ Solution per sample

A: One or several substrates (DNAs or RNAs) in multiples

- Prepare mastermixes by dividing cell suspension according to number of substrates
- Add required amount of substrates to each aliquot (max. 2μ l per sample)
- Transfer 20μ l of mastermixes into the wells of the 96-well Nucleocuvette ${ }^{\text {Tm }}$ Modules

B: Multiple substrates (e.g. Library Transfection)

- Pipette $20 \mu \mathrm{l}$ of cell suspension into each well of a sterile U- or V-bottom 96-well microtiter plate
- Add $2 \mu \mathrm{l}$ substrates (maximum) to each well
- Transfer 20μ l of cells with substrates into the wells of the 96-well Nucleocuvette ${ }^{\text {Tm }}$ Modules

Note

It is advisable to pre-dispense each cell suspension into a sterile roundbottom 96-well plate or to pipet from a pipetting reservoir for multi-channel pipettes. Use a multi-channel or single-channel pipette with suitable pipette tips. As leaving cells in 96-well Nucleofector ${ }^{\text {rM }}$ Solution for extended periods of time may lead to reduced transfection efficiency and viability it is important to work as quickly as possible. Avoid air bubbles while pipetting.
2.10 Gently tap the Nucleocuvette ${ }^{\text {TM }}$ Plate to make sure the sample covers the bottom of the well
2.11 Place 96-well Nucleocuvette ${ }^{\text {TM }}$ Plate with closed lid into the retainer of the 96-well Shuttle. Well "A1" must be in upper left position
2.12 Start 96-well Nucleofection ${ }^{\text {TM }}$ Process by either pressing "Upload and start" in the 96-well Shuttle ${ }^{m}$ Software or pressing "Upload" in the 96-well Shuttle ${ }^{\text {rT }}$ Software and then the "Start" button at the 96-well Shuttle ${ }^{\text {rm }}$ (for both options please refer to the respective Manual)
2.13 After run completion, open retainer and carefully remove the 96-well Nucleocuvette ${ }^{\text {TM }}$ Plate from the retainer
2.14 Resuspend cells with $80 \mu 1^{*}$ (recommendation for 96 -well plates) or desired volume of pre-warmed medium (maximum cuvette volume $200 \mu \mathrm{l}$. Mix cells by gently pipetting up and down two to three times
2.15 Plate desired amount of cells in culture system of your choice. Recommendation for 96 -well plates: Transfer 50μ l of resuspended cells to 150μ l pre-warmed medium prepared in 96 -well culture plates*

* Note

The indicated cell numbers and volumes have been found to produce optimal 96-well Nucleofection ${ }^{\text {TM }}$ Results in most cases. However, depending on your specific needs you may wish to test an extended range of cell numbers. Cell numbers and volumes can be adapted such that fewer cells are transferred or duplicate plates can be seeded.

3. Post Nucleofection ${ }^{\text {™ }}$

3.1 Incubate the cells in humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator until analysis. Gene expression or down regulation, respectively, is often detectable after only 4-8 hours.

Additional Information

Up-To-Date List of all Nucleofector ${ }^{\text {mT }}$ References
www.lonza.com/nucleofection-citations
Technical Assistance and Scientific Support
USA/Canada
Tel 8005210390 (toll-free)
Fax 3018458338
scientific.support@lonza.com
Europe and Rest of World
Tel + 4922199199400
Fax +4922199199499
scientific.support.eu@lonza.com

www.lonza.com

Lonza Cologne GmbH - 50829 Cologne, Germany
Please note that the Amaxa"' Nucleofector" Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans. The Nucleofector"' Technology, comprising Nucleofection" Process, Nucleofector" Device, Nucleofector"' Solutions, Nucleofector" 96 -well Shuttle"' System and 96 -well Nucleocuvette" ${ }^{\prime \prime}$ plates and modules is covered by patent and/or patent-pending rights owned by Lonza Cologne GmbH. Amaxa, Nucleofector, Nucleofection, 96 -well Shuttle, Nucleocuvette and maxGFP are either registered trademarks or trademarks of the Lonza Cologne GmbH in Germany and/or U.S. and/or other countries. ATCC ${ }^{\oplus}$ and the ATCC Catalog Marks are trademarks of ATCC. Other product and company names mentioned herein are the trademarks of their respective owners.

This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com. The CMV promoter is covered under U.S. Patents $5,168,062$ and $5,385,839$ and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of lowa Research Foundation, 214 Technology Innovation Center, lowa City, IA 52242. The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for the obtainment of such license. No statement is intended or should be construed as a recommendation to infringe any existing patent.
© Copyright 2009, Lonza Cologne GmbH. All rights reserved - D4SC-3001_2011-02

