Amaxa™ 96-well Shuttle™ Basic Protocol for Human Stem Cells

Cell Description

For Human Stem Cells; e.g. H1, H7, H14, HS306; pluripotent cells, adherent.

Note

This basic protocol describes how to easily define optimal Nucleofection™ Conditions for different human stem cells (e.g. H1, H7, H14, HS306). We recommend first testing a set of pre-selected Nucleofector™ Programs together with two of our Primary Cell 96-well Nucleofector™ Kits:
- P3 Primary Cell 96-well Nucleofector™ Kit
- P4 Primary Cell 96-well Nucleofector™ Kit

For subsequent experiments simply use the kit which yields the best results.

If you have questions regarding your human stem cell of interest, please contact our Scientific Support Team for further help with the optimization.

Product Description

Recommended Kits

- P3 Primary Cell 96-well Nucleofector™ Kits
- P4 Primary Cell 96-well Nucleofector™ Kits

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>V4SP-3096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (reactions)</td>
<td>1×96</td>
</tr>
<tr>
<td>P3 Primary Cell 96-well Nucleofector™ Solution</td>
<td>2.25 ml</td>
</tr>
<tr>
<td>Supplement</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>pmaxGFP™ Vector (1 µg/µl in 10 mM Tris pH 8.0)</td>
<td>50 µg</td>
</tr>
<tr>
<td>Nucleocuvette™ Plate (s)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>V4SP-3960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (reactions)</td>
<td>10×96</td>
</tr>
<tr>
<td>P3 Primary Cell 96-well Nucleofector™ Solution</td>
<td>22.5 ml</td>
</tr>
<tr>
<td>Supplement</td>
<td>5 ml</td>
</tr>
<tr>
<td>pmaxGFP™ Vector (1 µg/µl in 10 mM Tris pH 8.0)</td>
<td>50 µg</td>
</tr>
<tr>
<td>Nucleocuvette™ Plate (s)</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>V4SP-4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (reactions)</td>
<td>1×96</td>
</tr>
<tr>
<td>P4 Primary Cell 96-well Nucleofector™ Solution</td>
<td>2.25 ml</td>
</tr>
<tr>
<td>Supplement</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>pmaxGFP™ Vector (1 µg/µl in 10 mM Tris pH 8.0)</td>
<td>50 µg</td>
</tr>
<tr>
<td>Nucleocuvette™ Plate (s)</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>V4SP-4960</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (reactions)</td>
<td>10×96</td>
</tr>
<tr>
<td>P4 Primary Cell 96-well Nucleofector™ Solution</td>
<td>2.25 ml</td>
</tr>
<tr>
<td>Supplement</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>pmaxGFP™ Vector (1 µg/µl in 10 mM Tris pH 8.0)</td>
<td>50 µg</td>
</tr>
<tr>
<td>Nucleocuvette™ Plate (s)</td>
<td>10</td>
</tr>
</tbody>
</table>

Storage and Stability

Store Nucleofector™ Solution, Supplement and pmaxGFP™ Vector at 4°C. For long term storage pmaxGFP™ Vector is ideally stored at -20°C. The expiry date is printed on the solution box. Once the Nucleofector™ Supplement is added to the Nucleofector™ Solution it is stable for three months at 4°C.
Optimization Guidelines

The initial optimization experiment is comprised of 32 reactions, using 2 Nucleocuvette™ Modules: 7 different Nucleofector™ Programs are tested in duplicate with 2 Nucleofector™ Solutions plus 1 control. The program and 96-well Nucleofector™ Solution which turned out to be the most appropriate Nucleofection™ Condition should be used for all subsequent transfections.

<table>
<thead>
<tr>
<th>P3 Primary Cell Nucleofector™ Solution</th>
<th>P4 Primary Cell Nucleofector™ Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A 96-CA-137</td>
<td>96-CA-137</td>
</tr>
<tr>
<td>B 96-CB-150</td>
<td>96-CB-150</td>
</tr>
<tr>
<td>C 96-CD-118</td>
<td>96-CD-118</td>
</tr>
<tr>
<td>D 96-CE-118</td>
<td>96-CE-118</td>
</tr>
<tr>
<td>E 96-CM-113</td>
<td>96-CM-113</td>
</tr>
<tr>
<td>F 96-DC-100</td>
<td>96-DC-100</td>
</tr>
<tr>
<td>G 96-DN-100</td>
<td>96-DN-100</td>
</tr>
<tr>
<td>H negative control (no program)</td>
<td>negative control (no program)</td>
</tr>
</tbody>
</table>

Required Material

Note
Please make sure that the entire supplement is added to the Nucleofector™ Solution.

- Nucleofector™ 96-well Shuttle System (Nucleofector™ Device, version IIS; 96-well Shuttle™ Device; laptop with 96-well Shuttle™ Software)
- Supplemented 96-well Nucleofector™ Solution at room temperature prior to Nucleofection™
- Supplied Nucleocuvette™ Plates
- Supplied pmaxGFP™ Vector, stock solution 1 µg/µl

Note
Volume of substrate solution added to each sample should not exceed 10 % of the total reaction volume (2 µl for 20 µl reactions). For positive control using pmaxGFP™ Vector, please dilute the stock solution to reach the appropriate working concentration.

- Substrate of interest, highly purified, preferably by using endotoxin free Kits; A260 : A280 ratio should be at least 1.8
- Nucleocuvette™ compatible tips: epT.I.P.S.™ (US/CDN: Eppendorf North America, Cat. No. 2491.431, Rest of World: Eppendorf AG, Cat. No. 0030073.266) or Matrix TallTips™ (Matrix Technologies Corp., Cat. No. 7281). Before using other types of pipette tips, please ensure they reach the bottom of the Nucleocuvette™ Wells without getting stuck
- 96-well culture plates or culture plates of your choice

For Culture with Feeder Cells:
- Prewarm appropriate volume of culture media at 37°C (200 µl per sample); DMEM:F-12 (Lonza, Cat. No. 12-719F) supplemented with 15–20 % serum replacement (Invitrogen, Cat. No. 10828-028), 1–2 % nonessential amino acids (Lonza, Cat. No. 13-114E), 1–4 mM L-glutamine (Lonza, Cat. No. 17-605C), 0.1 mM 2-Mercaptoethanol (Invitrogen, Cat. No. 21985-023) and 4–8 ng/ml fibroblast growth factor-2 (Milipore, Cat. No. GF003AF-MG)
- Prepare a 96-well plate coated with gelatine and inactivated feeder cells (one well per sample) 24 hours before Nucleofection™

For Feeder-Free Culture:
- Prewarm appropriate volume of culture media at 37°C (200 µl per sample; mTesR™ 1 medium (StemCell Technologies, Cat. No. 05850)
- Prepare a 96-well culture plate coated with Matrigel™ (BD Biosciences, Cat. No. 354277)

1. Pre Nucleofection™

Note
Transfection results may vary due to different culture conditions prior and post Nucleofection™.

Important Considerations — Single Cell Suspension
- We recommend transfecting the cells in single cell suspension. Nucleofection™ of clumps leads to lower transfection efficiency and less reproducibility (for details see reference 1)
- If single cell suspension passage is not established, please do some pre-experiments by testing Accutase (reference 2 and 3) and Trypsin (reference 4) for detachment. Cultivate the cells afterwards and analyze which method led to highest viability and lowest differentiation
- The use of apoptosis inhibitors like ROCK inhibitor (reference 5) and neurotrophins (reference 6) have been reported to increase viability of hES cells. Depending on hESC culture conditions, it might be advantageous to use ROCK inhibitor or neurotrophins to obtain higher viabilities

Cell Culture Recommendations

1.1 Replace media every day
1.2 Cells should be passaged 1–2 times per week with a sub-cultivation ratio of 1 : 3 to 1 : 10. You may use Collagenase, Dispase or another enzyme for this purpose
A. Harvest of stem cells cultured on feeder cells

There are three possibilities to remove feeder cells from your stem cell culture prior to Nucleofection™:
- If your stem cells are usually cultured on feeder cells, passage them once to Matrigel™ coated plates to remove the feeder cells described in reference 2. Then proceed to step 1.3 B
- Cultivate the cells on feeder cells until the day of the experiment. Detach the stem cells with Collagenase. Dissociate the clumps with Accutase into a single cell suspension.
- Cultivate the cells on feeder cells until the day of the experiment. Detach all cells with Accutase. Incubate the cells on an uncoated cell culture flask for 1 hour in a humidified 37°C/5% CO₂ incubator.
 - The feeder cells will attach and the stem cells will stay in suspension. Harvest the cells in suspension.

B. Harvest of feeder-free stem cell cultures

- Prior to Nucleofection™ detach the hES cells from the Matrigel™ plates by incubation with Accutase for 5 minutes at 37°C. Dissociate the cells into a single cell suspension by pipetting the suspension carefully up and down 4–6 times.
- Add medium to stop Accutase.

2. Nucleofection™

One Nucleofection™ Sample Contains

- 2 × 10⁵ cells
- 0.4–1 μg plasmid DNA (in 1–2 μl H₂O or TE) or 0.4–0.8 μg pmaxGFP™ Vector
- 20 μl 96-well Nucleofector™ Solution

Note

Human stem cells are quite sensitive to environmental conditions. Therefore please ensure you proceed with the Nucleofection™ Steps as fast as possible.

- Prepare cell culture plates by filling appropriate number of wells with desired volume of recommended culture media, e.g. 120 μl (see comments at the end of this chapter) for one well of a 96-well plate coated with Matrigel™ or gelantine and feeder cells and pre-incubate/equilibrarte plates in a humidified 37°C/5% CO₂ incubator
- Pre-warm/equilibrarte an aliquot of culture media to 37°C (80 μl per sample)
- Prepare 0.4–1 μg plasmid DNA or 0.4–0.8 μg pmaxGFP™ Vector
- Harvest the cells (please see 1.3)
- Count an aliquot of the detached cells and determine cell density
- Centrifuge the required number of cells (2 × 10⁵ cells per sample) at 115 × g for 3 minutes at room temperature
- Resuspend the cell pellet carefully in 20 μl room temperature 96-well Nucleofector™ Solution per sample

A: One or several substrates (DNAs or RNAs) in multiples
- Prepare mastermixes by dividing cell suspension according to number of substrates
- Add required amount of substrates to each aliquot (max. 2 μl per sample)
- Transfer 20 μl of mastermixes into the wells of the 96-well Nucleocuvette™ Modules

B: Multiple substrates (e.g. Library Transfection)

- Pipette 20 μl of cell suspension into each well of a sterile U- or V-bottom 96-well microtiter plate
- Add 2 μl substrates (maximum) to each well
- Transfer 20 μl of cells with substrates into the wells of
- the 96-well Nucleocuvette™ Modules

Note

It is advisable to pre-dispense each cell suspension into a sterile round-bottom 96-well plate or to pipet from a pipetting reservoir for multi-channel pipettes. Use a multi-channel or single-channel pipette with suitable pipette tips. Leaving cells in 96-well Nucleofector™ Solution for extended periods of time may lead to reduced transfection efficiency and viability. It is important to work as quickly as possible. Make sure the sample covers the bottom of the well, if necessary gently tap the Nucleocuvette™ Plate. Avoid air bubbles while pipetting.

- Place 96-well Nucleocuvette™ Plate with closed lid into the retainer of the 96-well Shuttle™. Well "A1" must be in upper left position
- Start 96-well Nucleofection™ Process by either pressing "Upload and start" in the 96-well Shuttle™ Software (please refer to Manual) or pressing "Upload" in the 96-well Shuttle™ Software and then the "Start" button at the 96-well Shuttle™ (please refer to Manual)
- After retainer opening, carefully remove the 96-well Nucleocuvette™ Plate from the retainer
2.14 Resuspend cells with desired volume of pre-warmed media (maximum cuvette volume 200 µl). Mix cells by gently pipetting up and down two to three times. Recommendation for 96-well plates: Resuspend cells in 80 µl of pre-warmed media.

2.15 Plate desired amount of cells in culture system of your choice. Recommendation for 96-well plates: Transfer 80 µl of resuspended cells to 120 µl pre-warmed media prepared in 96-well culture plates coated with Matrigel™ or gelantine and feeder cells.

2.16 If post Nucleofection™ cell culture is done in BD Matrigel™ (BD Biosciences) coated 96-well plates, centrifuge the culture plates loaded with cells at this point to guarantee proper attachment of the cells (70×g, 3 minutes, room temperature).

Notes
The Matrigel™ plates used for culturing of human stem cells should be fresh. Storage of these plates for more than 7 days leads to reduced attachment of the cells post Nucleofection™

The indicated plating cell numbers and volumes produce optimal 96-well Nucleofection™ Results in most cases. However, you may wish to test an extended range of cell numbers depending on your specific needs.

3. Post Nucleofection™

3.1 Incubate the cells in a humidified 37°C/5% CO2 incubator until analysis. Gene expression is often detectable after only 4–8 hours.

3.2 As cells were plated at high density post Nucleofection™, a passage step 48 hours post Nucleofection™ using Collagenase or Dispase might be necessary.

Note
The plating density post Nucleofection™ is a critical aspect for the viability of human stem cells. Our experience is that higher densities lead to better viability of the cells. Therefore we recommend plating human stem cells at densities from 4×10^5 to 6.5×10^5 cells per cm².

Additional Information
Up-To-Date List of all Nucleofector™ References
www.lonza.com/nucleofection-citations

Technical Assistance and Scientific Support
USA/Canada
Tel 800 521 0390 (toll-free)
Fax 301 845 8338
scientific.support@lonza.com

Europe and Rest of World
Tel + 49 221 99199 400
Fax + 49 221 99199 499
scientific.support.eu@lonza.com

References
1. Nucleofection Mediates High-efficiency Stable gene Knockdown and Transgene Expression in Human Embryonic Stem Cells; Kristi A. Hohenstein et al. (2008); Stem Cells First published online March 20, 2008; doi:10.1634/stemcells.2007-0857
2. Nucleofection of Human Embryonic Stem Cells; Henrike Siemen et al. (2005); Stem Cells and Development: 14: 378-383
3. Efficient propagation of single cells accutase-dissociated human embryonic stem cells; Ruchi Bajpai. et al. (2008); Molecular Reproduction and Development
4. Facilitated expansion of human embryonic stem cells by single cell enzymatic dissociation; Catharina Ellerström et al. (2007); Stem Cells 25: 1690-1696
5. A ROCK inhibitor permits survival of dissociated human embryonic stem cells; Kiichi Watanabe et al. (2007); Nature Biotechnology 25 (6): 681-686
7. Efficient and Stable Transgene Expression in Human Embryonic Stem Cells Using Transposon-Mediated Gene Transfer; Andrew Wilber et al. (2007); Stem Cell 25: 2919-2927
8. Efficient Transfection of Embryonic and adult stem cells; Uma Lakshmipathy et al. (2004); Stem Cells 22: 531-543

www.lonza.com

Lonza Cologne GmbH – 50829 Cologne, Germany

Please note that the Amaxa® Nucleofector™ Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans. The Nucleofector™ Technology, comprising Nucleofection™ Process, Nucleofector™ Device, Nucleofector™ Solutions, Nucleofector™ 96-well Shuttle™ System and 96-well Nucleocuvette™ Plates and Modules is covered by patent and/or patent-pending rights owned by Lonza Cologne GmbH. Amaxa, Nucleofector, Nucleofection and maxGFP are either registered trademarks or trademarks of the Lonza Cologne GmbH in Germany and/or U.S. and/or other countries. Falcon is a trademark of BD Biosciences. TallTips are a registered trademark of Matrix Technologies Corporation. ATCC® and the ATCC Catalog Marks are trademarks of ATCC. Other product and company names mentioned herein are the trademarks of their respective owners.

This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com. The CMV promoter is covered under U.S. Patents 5,168,062 and 5,385,839 and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of Iowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242. The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for the obtaining of such license. No statement is intended or should be construed as a recommendation to infringe any existing patent.

© Copyright 2009, Lonza Cologne GmbH. All rights reserved – D4SP:9011 2011-01

4