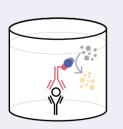


Routine use of the PyroCell[™] MAT System for *in vitro* detection of pyrogenic contaminants in test samples

The PyroCell™ MAT System, IL-6 comprises cryopreserved PBMC pooled from 4 healthy human donors (pMAT Cells), an optimized MAT Culture Medium Supplement, and a human IL-6 ELISA assay system (00254714). Monocytes, the key cells of innate immunity, respond to pyrogens in a product sample by producing pro-inflammatory cytokines such as IL-6 during a stimulation period. The cell culture supernatant containing the released IL-6 cytokines is then analyzed with the PeliKine compact human IL-6 ELISA assay kit.

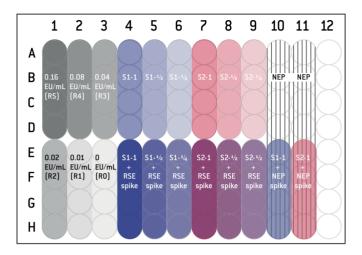
Regulatory requirements as outlined for example, by the European Pharmacopeia (Chapter 2.6.30) describe the following options for routine use of the MAT assay: the quantitative test (Method A), the semi-quantitative test (Method B), and the reference lot comparison test (Method C). This quick start guide is describing an example employing Method A or B. The "historical LOD" for the PyroCell" MAT assay system is 0.02 EU/mL. For more details of the test procedure please refer to the PyroCell" MAT System User Guide for Routine Use.


Day 1: Stimulation of pMAT Cells

- · Prepare endotoxin dilutions.
- Prepare test samples on the cell culture plate.
- Thaw pMAT Cells, transfer to the plate and incubate for 18-24h.
- Overnight coating of the ELISA plate.

Day 2: IL-6 ELISA assay

- Harvest the culture supernatants.
- Detect IL-6 cytokines with an IL-6 ELISA assay.
- Read results in a Microplate absorbance reader.



Calculate the pyrogenicity of the test sample.

PyroCell[™] MAT System quick start guide

Day 1: Stimulation of pMAT Cells

Column 1-3: 5-point standard curve $\{0.16-0.08-0.04-0.02-0.01\ EU/mL\}$, and a blank sample.

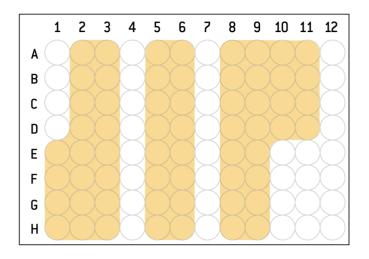
Column 4-6 & 7-9: test samples [3 dilutions each] with and without control endotoxin spike $\{0.04\,EU/mL\}$.

Column 10-12: test sample or optional NEP control (spiked into complete medium and sample S1-1 and S2-1).

Solutions needed

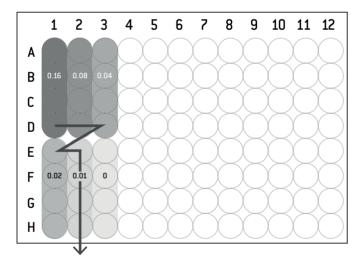
- 1 mL reference standard endotoxin (RSE) dilution, 0.16 EU/mL (by serial dilution).
- 2 mL of endotoxin spike dilution, 0.08 EU/mL (3 samples).
- 2.5 mL of test sample dilutions (up to 3 samples).
- 1 mL non-endotoxin pyrogen (NEP) dilution (optional control, replace the 3rd sample).

Points to consider

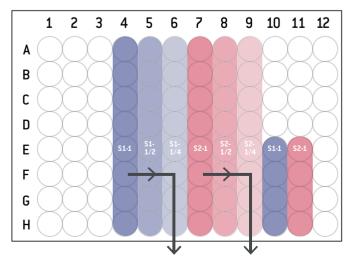

- Do not vortex dilutions containing complete medium or pMAT Cells.
- Prepare all dilutions for cell culture in an aseptic environment (laminar airflow cabinet) at the day of experiment.
- Use pyrogen-free accessories and tubes only. Equilibrate reagents to room temperature before use.
- Avoid bubbles and foam formation.
- The highest dilution on the plate shall not exceed the maximum valid dilution (MVD).
- Final dilution in the plate: 2-fold for all samples.

Endotoxin dilutions

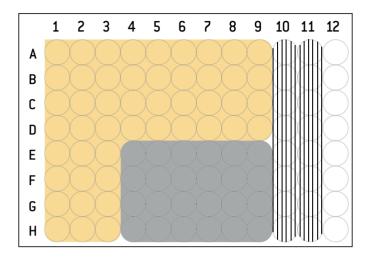
 Prepare complete medium by adding MAT Culture Medium Supplement to 33 mL IMDM. Mix by inverting the tube 10x.


Step 1: Serial dilution Step 2: Spike solution 2000 EU/mL EU/mL 0.08 EU/mL EU/mL EU/mL 0.16 100 50 µL RSE dilution, 20 µL RSE dilution, 80 µL RSE dilution, 920 80 µL RSE solution RSE stock solution in LAL water $950 \, \mu L \, IMDM$ 980 µL complete µL complete medium 1920 µL complete medium medium

Prepare the cell culture plate

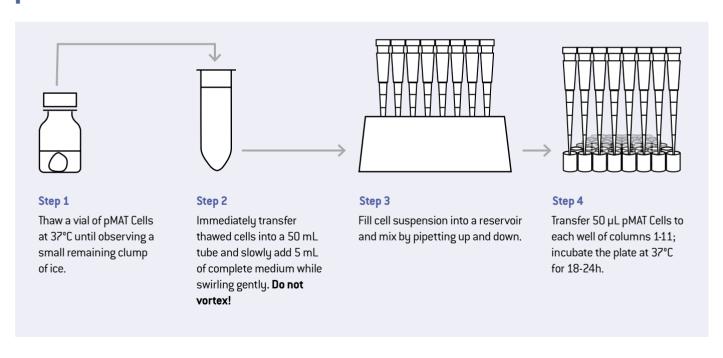

Step 3: Transfer complete medium

• Add 100 µL of complete medium into every yellow well.


Step 4: Prepare the endotoxin standard curve

- Add 200 µL of the 0.16 EU/mL RSE dilution into wells A1-D1.
- Transfer 100 μ L from A1-D1 to A2-D2. Mix by pipetting up and down 10x
- Repeat transfer from A2-D2 to A3-D3, then to E1-H1 and E2-H2 as illustrated.
- Discard 100 µL from E2-H2.

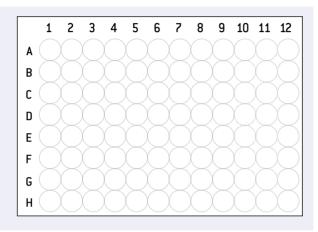
Step 5: Prepare the sample dilution


- Add 200 µL of the sample S1 into column 4.
- Transfer 100 μ L from column 4 to 5, and column 5 to 6. Mix each time by pipetting up and down 10x.
- Discard 100 µL from column 6.
- Repeat 2-fold dilution for other test samples, e.g. sample S2 (columns 7-9).
- (Optional for NEP) Add 100 μL of sample S1 into E10-H10 and sample S2 into E11-H11.

Step 6: Add endotoxin spike and optional, NEP control

- Add 50 µL of complete medium into yellow wells.
- Add 50 μL of endotoxin spike solution (0.08 EU/mL) to the grey wells.
- Add 50 µL of NEP to column 10 and 11 (striped wells).

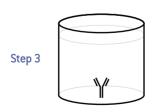
Thaw pMAT Cells, transfer to plate and incubate


Day 2: IL-6 ELISA assay

Points to consider

- During wash steps make sure to empty all wells completely after the last wash step.
- Equilibrate all buffers and solutions to room temperature prior to use (exception: anti-IL 6 antibody and streptavidin-HRP reagent).

Step1: Overnight coating of the ELISA plate (day 1)


- Dissolve content of one coating buffer capsule in 100 mL distilled water, incubate 5 minutes.
- Mix 12 mL of coating buffer with 120 µL coating antibody.
- Add 100 µL coating buffer to each wells of the microtiter plate and incubate over night at room temperature.

Step 2

Harvesting the cell culture supernatants

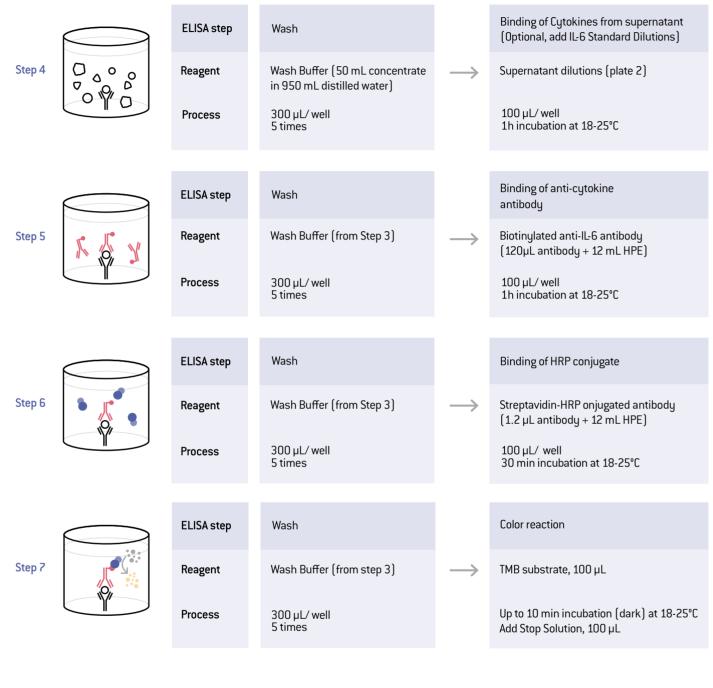
- Transfer supernatants from the cell culture plate (day1) into a fresh plate (plate 1).
- Dissolve 15 mL 5-fold concentrated HPE buffer in 60 mL distilled water.
- Prepare a dilution of each supernatant (e.g. a 1:5 dilution) by adding 120 μL of 5-fold concentrated HPE buffer into each well of a fresh plate (plate 2). Transfer 30 μL supernatant from plate 1 to the corresponding well of plate 2. Mix by pipetting up and down.

ELISA step

Reagent

PBS Buffer (1 PBS tablet in

200 mL distilled water)


Use 300 µL/ well 4 times

Wash

Blocking of unspecific binding sites

Blocking Buffer (500 µL Blocking Reagent in 25 mL PBS)

200 µL/ well 1h incubation at 18-25°C

Step 8

Read results

- Determine the absorptions (0D) at 450 nm and 540-590 nm in a plate reader (e.g. ELx808 Reader) within 30 minutes.
- Analyze results.

MAT reagents and pyrogen-free materials

Product name	Cat. No.
PyroCell™ MAT System, IL-6	00254714
PyroCell™ MAT System, IL-1 beta	00254715
Iscove's Modified Dulbecco's Medium(IMDM)	12-722F
Reference Standard Endotoxin (RSE – USP)	E700
LAL Reagent Water (e.g. 100 mL)	W50-100
Sterile, pyrogen-free glass tubes	N207
Reagent Reservoir	00190039
LAL Reagent Grade™ Multi-well Plates	25-340
Pyrogen-free Eppendorf® Biopur Tips, 2-200 µL	25-415
Pyrogen-free Eppendorf® Biopur Tips, 50-1000 μL	25-417
ELx808™ Reader with filters (450 nm & 540-590 nm)	25-315S
(optional) Non-endotoxin pyrogens	

What you also need

- 50 mL tubes (cell-culture grade, endotoxin-free)
- Bottles and test tubes (buffer preparation)
- Volumetric & serological pipette (as needed)
- Adjustable pipettes, multichannel pipette,
- pipette tips (standard)
- 96-well round bottom plates (standard)
- Laminar airflow cabinet (aseptic)
- CO₂ cell incubator (37°C, 5% CO₂)
- Water bath (37°C)
- · Automated microplate washer and microplate shaker

Supporting Documents

- Certificate of Analysis (CoA), www.lonza.com/coa
- PyroCell™ MAT System User Guide for Routine Use
- PyroCell™ MAT Analytics Guide

