Amaxa ${ }^{\circledR}$ Human Stem Cell Nucleofector ${ }^{\circledR}$ Starter Kit

For Human Stem Cells

e.g. BGO1V, H1, H7, H9.2, HSF6, RH1 and RH6.

Note This Starter Kit is based upon feedback collected from researchers. You can determine the optimal combination of program and Nucleofector ${ }^{\circledR}$ Solution (Nucleofection ${ }^{\circledR}$ Condition) for your stem cell using this Human Stem Cell Nucleofector ${ }^{\circledR}$ Starter Kit [Cat. No. VPH-5002]. If the Human Stem Cell Nucleofector ${ }^{\oplus}$ Solution 1 yields the best results, simply use the Human Stem Cell Nucleofector ${ }^{\oplus}$ Kit 1 [Cat. No. VPH-5012] or the Human Stem Cell Nucleofector ${ }^{\circledR}$ Kit 2 [Cat. No. VPH-5022] if Human Stem Cell Nucleofector ${ }^{\circledR}$ Solution 2 yields the best results.

Product Description

Optimization Guidelines

The initial optimization experiment is comprised of 12 reactions: 5 different Nucleofector ${ }^{\circledR}$ Programs are tested with 2 different Nucleofector® ${ }^{\circledR}$ Solutions (HSC 1 and HSC 2) plus 1 control (no program). The Nucleofection ${ }^{\circledR}$ condition which turns out to be the most appropriate should be used for all subsequent transfections. A further fine tuning of the Nucleofection ${ }^{\oplus}$ Condition can be performed with the help of our Scientific Support Team.

Solution 1	HSC 1	HSC 2
	Nucleofector ${ }^{\oplus}$ II	Nucleofector ${ }^{\text {II 4 }}$
Program 1	A-012	A-012
Program 2	A-013	A-013
Program 3	A-023	A-023
Program 4	A-027	A-027
Program 5	B-016	B-016

Required Material

Note Please make sure that the entire supplement is added to the Nucleofector ${ }^{\circledR}$ Solutions.

- Nucleofector ${ }^{\oplus}$ Device
- Supplemented Nucleofector ${ }^{\circledR}$ Solutions at room temperature
- Supplied certified cuvettes
- Supplied plastic pipettes
- Supplied pmaxGFP® Vector
- Substrate of interest, highly purified, preferably by using endotoxin free Kits; A260: A280 ratio should be at least 1.8
- Culture dishes of your choice
- For detaching cells: Accutase solution [PAA Laboratories, Cat. No. L11-007] or 0.05 or 0.25% Trypsin/ EDTA solution
- Medium for culture with feeder cells: DMEM F-12 [Lonza, Cat.No. 12-719F] supplemented with 15 20\% Knockout ${ }^{\text {tw }}$ serum replacement [Invitrogen, Cat. No. 10828-028], 1-2\% nonessential amino acids [Lonza, Cat. No. 13-114E], 1-4mML-glutamine [Lonza, Cat. No.17-605C], 0.1 mM 2 -Mercaptoethanol and $4-8 \mathrm{ng} / \mathrm{ml}$ fibroblast growth factor-2 [Milipore, Cat. No. GF003AF-MG]
- Plates for culture with feeder cells: Prepare a 24 -well plate coated with gelatine and inactivated feeder cells (one well per sample) 24 hours before Nucleofection ${ }^{\circledR}$
- Medium for feeder-free culture: mTesSR ${ }^{\text {m }} 1$ medium [StemCell Technologies, Cat. No. 05850]
- Plates for feeder-free culture: Prepare a 24-well culture plate coated with BD Matrigel ${ }^{m}$ [BD Biosciences, Cat. No. 354277]
- Prewarm appropriate volume of culture medium to $37^{\circ} \mathrm{C}$ (1 ml per sample)
- Appropriate number of cells (8×10^{5} cells per sample; lower or higher cell numbers may influence transfection results)

1. Pre Nucleofection ${ }^{\circledR}$

Note Transfection results may vary due to different culture conditions prior and post Nucleofection ${ }^{\circledR}$.
Important considerations Single cell suspension:

- We recommend transfecting the cells in single cell suspension. Nucleofection ${ }^{\circledR}$ of clumps leads to lower transfection efficiency and less reproducibility (for details see reference 1)
- If single cell suspension passage is not established, please do some pre-experiments by testing Accutase (reference 2 and 3) and Trypsin (reference 4) for detachment. Cultivate the cells afterwards and analyze which method led to highest viability and lowest differentiation
- The use of apoptosis inhibitors like ROCK inhibitor (reference 5) and neurotrophins (reference 6) have been reported to increase viability of hES cells. Depending on hESC culture conditions it might be advantageous to use ROCK inhibitor or neurotrophins to obtain higher viabilities

Cell culture recommendations

1.1 Replace media every day

1.2 Cells should be passaged $1-2$ times per week with a sub cultivation ratio of $1: 3$ to $1: 10$. You may use Collagenase, Dispase or another enzymes for this purpose

Detachment of stem cells

A. Harvest of stem cells cultured on feeder cells

There are three possibilities to remove feeder cells from your stem cell culture prior to Nucleofection ${ }^{\oplus}$:

- If your stem cells are usually cultured on feeder cells, passage them once to Matrigel ${ }^{\oplus}$ coated plates to remove the feeder cells (described in reference 2). Then proceed to step B
- Cultivate the cells on feedercells untilthe day ofthe experiment. Detach the stem cells withCollagenase. Dissociate the clumps with Accutase into a single cell suspension
- Cultivate the cells on feedercells untilthe day ofthe experiment. Detach all cells with Accutase. Incubate the cells on an uncoated cell culture flask for 1 hour in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator. The feeder cells will attach and the stem cells will stay in suspension. Harvest the cells in suspension

B. Harvest of feeder-free stem cell cultures

- Prior to Nucleofection ${ }^{\circledR}$ detach the hES cells from the Matrigel ${ }^{\circledR}$ plates by incubation with Accutase for 5 minutes at $37^{\circ} \mathrm{C}$. Dissociate the cells into a single cell suspension by pipetting the suspension carefully up and down $4-6$ times. Add medium to stop Accutase

2. Nucleofection ${ }^{\circledR}$

One Nucleofection ${ }^{\circledR}$ Sample contains
8×10^{5} cells
$1-5 \mu$ g plasmid DNA (in $1-5 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ or TE) or $2 \mu \mathrm{~g}$ pmaxGFP® Vector or $30-300 \mathrm{nM}$ siRNA (3-30 pmol/sample)
$100 \mu \mathrm{l}$ Human Stem Cell Nucleofector ${ }^{\circledR}$ Solution 1 or 2

Note Human stem cells are quite sensitive to environmental conditions. Therefore please ensure you proceed with the Nucleofection ${ }^{\circledR}$ steps as fast as possible.
2.1 Please make sure that the entire supplement is added to the Nucleofector ${ }^{\circledR}$ Solution
2.2 Prepare cell culture plates by filling appropriate number of wells with desired volume of recommended culture media, e.g. $500 \mathrm{ml}^{*}$ (see comments at the end of this chapter) for one well of a 24 -well plate coated with BD Matrigel"m or gelatine and feeder cells and pre-incubate/equilibrate plates in a humidified $37^{\circ} \mathrm{C} / 5 \%$
2.3 Harvest the cells (please see chapter 1)
2.4 Count an aliquot of the detached cells and determine cell density
2.5 Centrifuge the required number of cells (8×10^{5} cells per sample) at 115 xg for 3 minutes at room temperature
2.6 Resuspend the cell pellet carefully in $100 \mu \mathrm{l}$ room temperature Nucleofector ${ }^{\circledR}$ Solution per sample
2.7 Combine $100 \mu \mathrm{l}$ of cell suspension with $1-5 \mu \mathrm{~g}$ DNA, $2 \mu \mathrm{~g}$ pmaxGFP® Vector (recommended for initial optimization), or $30 \mathrm{nM}-300 \mathrm{nM}$ siRNA ($3-30 \mathrm{pmol} / \mathrm{sample}$) or other substrates
2.8 Transfer cell/DNA suspension into certified cuvette; sample must cover the bottom of the cuvette without air bubbles. Close the cuvette with the cap

Optimized Protocol for Human Stem Cells

2.9 Select the appropriate Nucleofector ${ }^{\oplus}$ Program. Initially please try all 5 Nucleofector ${ }^{\circledR}$ Programs with both Nucleofector ${ }^{\circledR}$ Solutions to determine the most appropriate Nucleofection ${ }^{\circledR}$ condition for your specific human stem cell type: A-012, A-013, A-023, A-027 and B-016 (A-12, A-13, A-23, A-27 and B-16 for Nucleofector ${ }^{\text {® }}$ (Device)
2.10 Insert the cuvette with cell/DNA suspension into the Nucleofector ${ }^{\circledR}$ Cuvette Holder and apply the selected program
2.11 Take the cuvette out of the holder once the program is finished
2.12 Add $\sim 500 \mu \mathrm{l}$ of the pre-equilibrated culture media to the cuvette and gently transfer the sample immediately into the 24 -well plate (final volume 1 ml media per well/sample) coated with Matrigel or gelatine and feeder cells. Use the supplied pipettes and avoid repeated aspiration of the sample

Note The BD Matrigel ${ }^{[m}$ plates used for culturing of human stem cells should be fresh. Storage of these plates for more than 7 days leads to reduced attachment of the cells post Nucleofection ${ }^{\circledR}$.
*Note The indicated cell numbers and volumes have been found to produce optimal Nucleofection ${ }^{\circledR}$ results in most cases. However, depending on your specific needs you may wish to test an extended range of cell numbers and DNA amounts.

3. Post Nucleofection ${ }^{\circledR}$

3.1 Incubate the cells in a humidified $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ incubator until analysis. Gene expression or down regulation, respectively, is often detectable after only $4-8$ hours
3.2 As cells were plated at high density post Nucleofection ${ }^{\circledR}$, a passage step 48 hours post Nucleofection ${ }^{\circledR}$ using Collagenase or Dispase might be necessary

Note The plating density post Nucleofection ${ }^{\circledR}$ is a critical aspect for the viability of human stem cells. Our experience is that higher densities lead to better viability of the cells. Therefore we recommend plating human stem cells at densities from 4×10^{5} till 6.5×10^{5} cells per cm^{2}.

Optimized Protocol for Human Stem Cells

Additional Information

```
For an up-to-date list if all human stem cells successfully transfected by Nucleofection \({ }^{\circledR}\), please refer to:
www.lonza.com/cell-database
For an up-to-date list of all Nucleofector \({ }^{\circledR}\) References, please refer to: www.lonza.com/nucleofection-citations
```


For more technical assistance, contact our Scientific Support Team:

```
USA/Canada Europe and Rest of World
Phone: 8005210390 (toll-free)
Phone: +49 22199199400
Fax: 3018458338
E-mail: scientific.support@lonza.com
```

Fax: $\quad+4922199199499$
E-mail: scientific.support.eu@lonza.com

References

1. Hohenstein KA. et al. (2008) Nucleofection ${ }^{\oplus}$ Mediates High-efficiency Stable gene Knockdown and Transgene Expression in Human Embryonic Stem Cells. Stem Cells 26(6):1436-1443
2. Siemen H. et al. (2005) Nucleofection of Human Embryonic Stem Cells. Stem Cells and Development 14: 378-383
3. Bajpai R.et al. (2008) Efficient propagation of single cells accutase-dissociated human embryonic stem cells. Molecular Reproduction and Development 75(5):818-827
4. Ellerström C. et al. (2007) Facilitated expansion of human embryonic stem cells by single cell enzymatic dissociation. Stem Cells 25:1690-1696
5. Watanabe K. et al. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology 25 (6): 681-686
6. Pyle Ad. et al. (2006) Neutrophins mediate human embryonic stem cell survival. Nature Biotechnology 24 (3): 344-350
7. Wilber A. et al. (2007) Efficient and Stable Transgene Expression in Human Embryonic Stem Cells Using Transposon-Mediated Gene Transfer. Stem Cell 25: 2919-2927
8. Lakshmipathy et al. (2004) Efficient Transfection of Embryonic and adult stem cells. Stem Cells 22:531-543

Lonza Cologne AG

50829 Cologne, Germany

Please note that the Amaxa ${ }^{\oplus}$ Nucleofector ${ }^{\oplus}$ Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans.
The Nucleofector ${ }^{\circledR}$ Technology, comprising Nucleofection ${ }^{\circledR}$ Process, Nucleofector ${ }^{\circledR}$ Device, Nucleofector ${ }^{\circledR}$ Solutions, Nucleofector ${ }^{\oplus}$ 96 -well Shuttle ${ }^{\oplus}$ System and 96 -well Nucleocuvette ${ }^{\oplus}$ plates and modules is covered by patent and/or patent-pending rights owned by Lonza Cologne AG.
Amaxa, Nucleofector, Nucleofection and maxGFP are registered trademarks of the Lonza Cologne AG in Germany and/or U.S. and/or other countries.

BD Matrigel is a trademark of Becton, Dickinson and Company.
Other product and company names mentioned herein are the trademarks of their respective owners.
This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com.
The CMV promoter is covered under U.S. Patents $5,168,062$ and $5,385,839$ and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of lowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242.
The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for the obtainment of such license.
No statement is intended or should be construed as a recommendation to infringe any existing patent.
© Copyright 2009, Lonza Cologne AG. All rights reserved DHPH-1002 09/09

