Amaxa™ 96-well Shuttle™ Basic Protocol for Primary Mammalian Fibroblasts # **Cell Description** Fibroblastoid cells, adherent. ## Note Mammalian fibroblasts display significant phenotypic variations due to the wide range of both species and body sites from which they may be sourced. This basic protocol describes how to easily define optimal Nucleofection™ Conditions for different mammalian fibroblasts. We recommend to first test a set of pre-selected Nucleofector™ Programs together with two of our Primary Cell 96-well Nucleofector™ Kits: - P2 Primary Cell 96-well Nucleofector™ Kit - P3 Primary Cell 96-well Nucleofector™ Kit For subsequent experiments simply use the kit which yields the best results. If you have questions regarding your fibroblasts of interest, please contact our Scientific Support Team for further help with the optimization. # **Product Description** ## **Recommended Kits** P2 Primary Cell 96-well Nucleofector™ Kit or P3 Primary Cell 96-well Nucleofector™ Kit | Cat. No. | V4SP-2096 | | |--|-----------|--| | Size (reactions) | 1×96 | | | P2 Primary Cell 96-well Nucleofector™ Solution | 2.25 ml | | | Supplement | 0.5 ml | | | pmaxGFP™ Vector (1 μg/μl in 10 mM Tris pH 8.0) | 50 µg | | | Nucleocuvette™ Plate (s) | 1 | | | | | | | Cat. No. | V4SP-2960 | | | Size (reactions) | 10×96 | | | P2 Primary Cell 96-well Nucleofector™ Solution | 22.5 ml | | | Supplement | 5.0 ml | | | pmaxGFP™ Vector (1 μg/μl in 10 mM Tris pH 8.0) | 50 μg | | | Nucleocuvette™ Plate (s) | 10 | | | | | | | Cat. No. | V4SP-3096 | | | Size (reactions) | 1×96 | | | P3 Primary Cell 96-well Nucleofector™ Solution | 2.25 ml | | | Supplement | 0.5 ml | | | pmaxGFP™ Vector (1 μg/μl in 10 mM Tris pH 8.0) | 50 µg | | | Nucleocuvette™ Plate (s) | 1 | | | | | | | Cat. No. | V4SP-3960 | | | Size (reactions) | 10×96 | | | P3 Primary Cell 96-well Nucleofector™ Solution | 22.5 ml | | | Supplement | 5 ml | | | pmaxGFP™ Vector (1 µg/µl in 10 mM Tris pH 8.0) | 50 µg | | | Nucleocuvette™ Plate (s) | 10 | | ## Storage and Stability Store Nucleofector $^{\mathbb{M}}$ Solution, Supplement and pmaxGFP $^{\mathbb{M}}$ Vector at 4° C. For long term storage pmaxGFP $^{\mathbb{M}}$ Vector is ideally stored at -20 $^{\circ}$ C. The expiry date is printed on the solution box. Once the Nucleofector $^{\mathbb{M}}$ Supplement is added to the Nucleofector $^{\mathbb{M}}$ Solution it is stable for three months at 4° C. ## Note 96-well Nucleofector™ Solutions can only be used with conductive polymer cuvettes, i.e. in the 96-well Shuttle™ Device and in the 4D-Nucleofector™ System. They are not compatible with the Nucleofector™ II/2b Device. # **Optimization Guidelines** The initial optimization experiment is comprised of 32 reactions, using 2 Nucleocuvette™ Modules: 7 different Nucleofector™ Programs are tested in duplicate with 2 Nucleofector™ Solutions plus 1 control. The program and 96-well Nucleofector™ Solution which turned out to be the most appropriate Nucleofection™ Condition should be used for all subsequent transfections. | | P2 Primary Cell Nucleofector™ Solution | on | P3 Primary Cell Nucleofector™ Solution | | | |---|--|-------------------------------|--|-------------------------------|------| | | 1 | 2 | 3 | 4 | 5-12 | | Α | 96-CA-137 | 96-CA-137 | 96-CA-137 | 96-CA-137 | | | В | 96-CM-138 | 96-CM-138 | 96-CM-138 | 96-CM-138 | | | С | 96-DS-150 | 96-DS-150 | 96-DS-150 | 96-DS-150 | _ | | D | 96-EH-100 | 96-EH-100 | 96-EH-100 | 96-EH-100 | | | Е | 96-EN-150 | 96-EN-150 | 96-EN-150 | 96-EN-150 | | | F | 96-E0-114 | 96-E0-114 | 96-E0-114 | 96-E0-114 | | | G | 96-FF-113 | 96-FF-113 | 96-FF-113 | 96-FF-113 | | | Н | negative control (no program) | | # Required Material ## Note Please make sure that the entire supplement is added to the Nucleofector™ Solution. - Nucleofector™96-well Shuttle System (Nucleofector™Device, version IIS; 96-well Shuttle™ Device; laptop with 96-well Shuttle™ Software) - Supplemented 96-well Nucleofector™ Solution at room temperature - Supplied Nucleocuvette™ Plates - Supplied pmaxGFP™ Vector, stock solution 1 μg/μl ## Note Volume of substrate solution added to each sample should not exceed 10 % of the total reaction volume (2 μ l for 20 μ l reactions). For positive control using pmaxGFPTM Vector, please dilute the stock solution to reach the appropriate working concentration. - Substrate of interest, highly purified, preferably by using endotoxin free kits; A260: A280 ratio should be at least 1.8 - Nucleocuvette™ compatible tips: epT.I.P.S. (US/CDN: Eppendorf North America, Cat. No. 2491.431, Rest of World: Eppendorf AG, Cat. No. 0030073.266) or Matrix TallTips™ (Matrix Technologies Corp., Cat. No. 7281). Before using other types of pipette tips, please ensure they reach the bottom of the Nucleocuvette™ Wells without getting stuck - 96-well culture plates or culture plates of your choice - For trypsinization: Please use trypsin as recommended by the cell supplier e.g. ReagentPack™ Subculture Reagent Kit containing trypsin/EDTA, HEPES Buffered Saline Solution (HEPES-BSS) and Trypsin Neutralizing Solution (TNS) (Lonza; Cat. No. CC-5034) - Appropriate volume of culture media at 37°C (160 µl per sample); please use media as recommended by the cell supplier e.g. FGM-2 BulletKit™ (Lonza; Cat. No. CC-3132) - Appropriate number of cells (1×10⁵ cells per sample) - Minimal cell number: 5×10⁴ cells (a lower cell number may lead to a major increase in cell mortality) # 1. Pre Nucleofection™ #### Note Transfection results may be source-dependent. #### **Cell Culture Recommendations** - 1.1 Replace medium every 2–4 days - 1.2 Cells should be passaged after reaching 70–90 % confluency - 1.3 Do not use cells after passage 14 for Nucleofection™ (for adult cells lower passage numbers are recommended) - 1.4 Cells should be passaged 2−4 days before Nucleofection™ depending on growth rate of cells ## Note Culture conditions may differ between cell types. Please follow your established procedure or the supplier's recommendations. # **Trupsinization** ## Note Please follow your established procedure or the supplier's recommendations (e.g. for NHDF-adult fibroblasts (Lonza; Cat. No. CC-2511) follow procedure described below). - 1.5 Remove media from the cultured cells and wash cells once with HEPES.RSS - 1.6 For harvesting, incubate the cells ~5 minutes at 37°C with recommended volume of indicated trypsinization reagent (please see required material) - 1.7 Neutralize trypsinization reaction with TNS once the majority of the cells (>90%) have been detached # 2. Nucleofection™ ## One Nucleofection™ Sample Contains - 1×10⁵ cells - 0.4-1 μg plasmid DNA (in 1-2 μl H₂0 or TE) or 0.4 μg pmaxGFP™ Vector - 20 μl Nucleofector™ Solution - 2.1 Please make sure that the entire supplement is added to the Nucleofector™ Solution - 2.2 Start Nucleofector™ 96-well Shuttle™ Software, verify device connection and upload experimental parameter file (for details see Manual "Nucleofector™ 96-well Shuttle™ System") - 2.3 Select appropriate Nucleofector™ Program. Please try all 7 Nucleofector™ Programs (96-CA-137, 96-CM-138, 96-DS-150, 96-EH-100, 96-EN-150, 96-E0-114 and 96-FF-113) initially with both Nucleofector™ Solutions to determine the most appropriate Nucleofection™ Condition for your specific fibroblast cell type - 2.4 Prepare cell culture plates by filling appropriate number of wells with desired volume of recommended culture media, e.g. 80 μl* (see comments at the end of this chapter) for one well of a 96-well plate and pre-incubate/equilibrate plates in a humidified 37°C/5 % CO₂ incubator - 2.5 Pre-warm an aliquot of culture media to 37 °C (80 µl* per sample) - 2.6 Prepare 0.4−1 µg plasmid DNA or 0.4 µg pmaxGFP™ Vector - 2.7 Harvest the cells by trypsinization (please see 1.5–1.7) - 2.8 Count an aliquot of the trypsinized cells and determine cell density - 2.9 Centrifuge the required number of cells (1×10^5) cells per sample at $90 \times g$ for 10 minutes at room temperature - 2.10 Resuspend the cell pellet carefully in 20 µl room temperature 96-well Nucleofector™ Solution per sample ## A: One or several substrates (DNAs or RNAs) in multiples - Prepare mastermixes by dividing cell suspension according to number of substrates - Add required amount of substrates to each aliquot (max. 2 µl per sample) - Transfer 20 µl of mastermixes into the wells of the 96-well Nucleocuvette™ Modules ## B: Multiple substrates (e.g. Library Transfection) - $-\$ Pipette 20 μI of cell suspension into each well of a sterile U- or V-bottom 96-well microtiter plate - Add 2 μl substrates (maximum) to each well - Transfer 20 µl of cells with substrates into the wells of the 96-well Nucleocuvette™ Modules ## Note It is advisable to pre-dispense each cell suspension into a sterile round-bottom 96-well plate or to pipet from a pipetting reservoir for multi-channel pipettes. Use a multi-channel or single-channel pipette with suitable pipette tips. As leaving cells in 96-well Nucleofector™ Solution for extended periods of time may lead to reduced transfection efficiency and viability it is important to work as quickly as possible. Make sure the sample covers the bottom of the well, if necessary gently tap the Nucleocuvette™ Plate. Avoid air bubbles while pipetting. - 2.11 Place 96-well Nucleocuvette™ Plate with closed lid into the retainer of the 96-well Shuttle™. Well "A1" must be in upper left position - 2.12 Start 96-well Nucleofection™ Process by either pressing "Upload and start" in the 96-well Shuttle™ Software or pressing "Upload" in the 96-well Shuttle™ Software and then the "Start" button at the 96-well Shuttle™ (for both options please refer to the respective Manual) - 2.13 After retainer opening, carefully remove the 96-well Nucleocuvette™ Plate from the retainer - 2.14 Incubate the 96-well Nucleocuvette™ Plate 10 minutes at room temperature - 2.15 After incubation resuspend cells with desired volume of prewarmed media (maximum cuvette volume 200 μ I). Mix cells by gently pipetting up and down two to three times. Recommendation for 96-well plates: Resuspend cells in 80 μ I of pre-warmed media* - 2.16 Plate desired amount of cells in culture system of your choice. Recommendation for 96-well plates: Transfer 20µl of resuspended cells to 80 µl pre-warmed media prepared in 96-well culture plates* ## * Note The indicated cell numbers and volumes have been found to produce optimal 96-well Nucleofection™ Results in most cases, however, depending on your specific needs you may wish to test an extended range of cell numbers. Cell numbers and volumes can be adapted such that fewer cells are transferred or duplicate plates can be seeded. # 3. Post Nucleofection™ 3.1 Incubate the cells in a humidified $37 \,^{\circ}\text{C/}5 \,^{\circ}\text{CO}_2$ incubator until analysis. Gene expression is often detectable after only 4–8 hours. # Additional Information # Up-To-Date List of all Nucleofector™ References www.lonza.com/nucleofection-citations ## Technical Assistance and Scientific Support #### USA/Canada Tel 800 521 0390 (toll-free) Fax 301 845 8338 scientific.support@lonza.com ## Europe and Rest of World Tel +49 221 99199 400 Fax +49 221 99199 499 scientific.support.eu@lonza.com ## www.lonza.com ## Lonza Cologne GmbH – 50829 Cologne, Germany Please note that the Amaxa" Nucleofector" Technology is not intended to be used for diagnostic purposes or for testing or treatment in humans. The Nucleofector" Technology, comprising Nucleofection" Process, Nucleofector" Device, Nucleofector and/or patent pending rights owned by Lonza Cologne GmbH. Nucleocuvette" Plates and Modules is covered by patent and/or patent-pending rights owned by Lonza Cologne GmbH. Amaxa, Nucleofector, Nucleofection and maxGFP are either registered trademarks or trademarks of the Lonza Cologne GmbH in Germany and/or U.S. and/or other countries. Falcon is a trademark of BD Biosciences. TallTips are a registered trademark of Matrix Technologies Corporation. Other product and company names mentioned herein are the trademarks of their respective owners. This kit contains a proprietary nucleic acid coding for a proprietary copepod fluorescent protein intended to be used as a positive control with this Lonza product only. Any use of the proprietary nucleic acid or protein other than as a positive control with this Lonza product is strictly prohibited. USE IN ANY OTHER APPLICATION REQUIRES A LICENSE FROM EVROGEN. To obtain such a license, please contact Evrogen at license@evrogen.com. The CMV promoter is covered under U.S. Patents 5,168,062 and 5,385,839 and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of lowa Research Foundation, 214 Technology Innovation Center, lowa City, IA 52242. The use of this product in conjunction with materials or methods of third parties may require a license by a third party. User shall be fully responsible for determining whether and from which third party it requires such license and for botainment of such license. No statement is intended or should be construed as a recommendation to infringe any existing patent. © Copyright 2009, Lonza Cologne GmbH. All rights reserved – D4SP-9014 2011-01